Straty ciepła pojedynczego przewodu wodnego w stropie, na podstawie modelu numerycznego

Heat Losses of a Singular Water Pipe in the Floor, on the Basis of Numerical Model

Michał Strzeszewski¹ ¹Politechnika Warszawska, Instytut Ogrzewnictwa i Wentylacji

STRESZCZENIE

W referacie przedstawiono analizę strat ciepła i rozkładu temperatury na powierzchni podłogi w zależności od schematu umieszczenia przewodu w stropie. Analizę przeprowadzono przy użyciu modelu numerycznego, zrealizowanego w postaci autorskiego programu komputerowego *Floor 2D*.

ABSTRACT

The paper presents an analysis of heat losses of a singular water pipe laid inside a floor. The study was carried out by means of a numerical model and computer program *Floor 2D*.

1. Wprowadzenie

W ostatnich latach coraz częściej wodne przewody c.o. prowadzone są w konstrukcji stropu (podłogi). W przypadku niedostatecznej izolacji lub jej braku, przewody takie charakteryzują się dużymi stratami ciepła. Problem ten jest często niedoceniany przez projektantów.

W literaturze opisano wiele uproszczonych metod obliczeniowych dla wymiany ciepła w takim i w podobnych przypadkach [1, 2, 3, 5, 7, 10, 11, 16, 17]. Jednak metody te były opracowywane z myślą o ogrzewanie podłogowym, gdzie istnieje wiele przewodów ułożonych równoległe w dość małej odległości (najczęściej do 30 cm). Jak wykazano w [4], wiarygodność analizowanych metod maleje wraz ze wzrostem rozstawu przewodów. Dlatego stosowanie tych metod w odniesieniu do przewodu pojedynczego może prowadzić do dużych niedokładności.

W tej sytuacji autor opracował model numeryczny przy wykorzystaniu metody bilansów elementarnych i zrealizował go w postaci programu komputerowego *Floor 2D* [14].

2. Schemat wyjściowy

Jako punkt wyjścia do studium przyjęto schemat, przedstawiony na rys. 1.

W analizie uwzględniono wpływ następujących czynników na straty ciepła i rozkład temperatury na powierzchni stropu:

- 1. temperatura zewnętrznej powierzchni przewodu (20÷90°C),
- 2. grubość "nadbetonu" (0÷30 cm),
- 3. średnica zewnętrzna przewodu (7÷35 mm).

W ramach niniejszej analizy wyznaczono straty ciepła oraz rozkłady temperatury na powierzchni podłogi na dwumetrowym odcinku prostopadłym do osi przewodu.

Rys. 1: Podstawowy schemat konstrukcji stropu przyjęty do obliczeń.

 1 – terakota; 2 – gładź cementowa w tym tzw. "nadbeton" tj. warstwa ponad górną tworzącą przewodu;
 3 – folia polietylenowa; 4 – styropian; 5 – strop żebrowy kanałowy;
 6 – tynk cementowo-wapienny.

Fig. 1: Basic scheme of the floor.

3. Wpływ temperatury zewnętrznej powierzchni przewodu

Na rys. 2 przedstawiono rozkłady temperatury na powierzchni podłogi dla różnych temperatur zewnętrznej powierzchni przewodu. Natomiast tabela 1 i rysunek 3 przedstawiają liniową moc cieplną.

Rys. 2: Rozkłady temperatury na powierzchni podłogi dla różnych temperatur powierzchni rury.Fig. 2: Temperature profiles on the floor surface for different pipe temperatures.

W przypadku wysokiej temperatury na powierzchni nieizolowanego przewodu, oprócz znacznych strat ciepła, może wystąpić przekroczenie dopuszczalnej temperatury podłogi. Obszar tego przekroczenia jest w omawianym przypadku niewielki (sięga do 35 cm szerokości), lecz wartość przekroczenia może być znacząca (do 22K). W związku z tym, w celu wyeliminowania zjawiska przekraczania temperatury dopuszczalnej, można obniżać temperaturę powierzchni przewodu – obniżając temperaturę wody lub stosując izolację wokół przewodu.

Tab. 1. Liniowa gęstość mocy (przekazywana do góry i do dołu) w funkcji temperatury na powierzchni rury.

temp. rury, °C	<i>q_g</i> , W/mb	<i>q_d</i> , W/mb	q _{sum} , W/mb
20	0,00	0,00	0,00
30	5,27	0,83	6,10
40	10,75	1,61	12,36
50	16,31	2,38	18,69
60	21,89	3,12	25,01
70	27,54	3,88	31,42
80	33,21	4,64	37,85
90	38,90	5,39	44,29

Rys. 3: Liniowa gęstość mocy w funkcji temperatury na powierzchni rury.Fig. 3: Linear heat density in function of the pipe temperature.

4. Wpływ grubości "nadbetonu"

Analizę wpływu grubości "nadbetonu" przedstawiono na rys. 4 i 5. Stosowanie grubszej warstwy betonu nad przewodem powoduje z jednej strony obniżenie temperatury maksymalnej, a z drugiej strony "spłaszczenie" rozkładu temperatury.

Jak wynika z rys. 5 i tab. 2 zwiększanie grubości "nadbetonu" powoduje zmniejszenie strumienia ciepła przekazywanego do pomieszczenia powyżej stropu, ale jednocześnie zwiększa się strumień ciepła przekazywany do dołu. Całkowite straty ciepła ulegają więc tylko niewielkiej redukcji. Np. w analizowanej sytuacji zwiększenie grubości "nadbetonu" z 5 cm do 10 cm powoduje zmniejszenie strat ciepła zaledwie o 6% przy znacznym zużyciu betonu.

Tab. 2. Liniowa gęstość mocy
(przekazywana do góry i do dołu)
w funkcji grubości "nadbetonu",
t _r =50°C.

grubość "nadbe- tonu", °C	$q_g,$ W/mb	<i>q</i> _d , W/mb	q _{sum} , W/mb
0,00	17,4	1,8	19,2
0,02	17,1	2,1	19,2
0,04	16,3	2,4	18,7
0,06	15,6	2,6	18,2
0,08	14,9	2,8	17,7
0,10	14,3	3,0	17,3
0,12	13,8	3,2	16,9
0,15	13,08	3,4	16,5
0,20	12,13	3,8	15,9
0.30	10.69	4.4	15.1

Rys. 5: Liniowa gęstość mocy w funkcji grubości "nadbetonu", t_r=50°C.
Fig. 5: Linear heat density in function of the width of the concrete layer over the pipe. The pipe temperature equals 50°C.

5. Wpływ średnicy przewodu

Na rys. 6 i 7 przedstawiono analizę zależności wymiany ciepła w stropie od średnicy zewnętrznej przewodu. Wraz ze wzrostem średnicy przewodów, wzrasta temperatura na powierzchni podłogi oraz straty ciepła.

Rys. 6: Rozkłady temperatury na powierzchni podłogi dla różnych średnic zewnętrznych przewodu, t_r =50°C. **Fi g. 6:** Temperature profiles on the floor surface for different pipe diameters. The pipe temperature equals 50°C.

Tab. 3.	Liniowa gęstość mocy
(przekazy	wana do góry i do dołu)
w funkcji	średnicy przewodu,
$t_r = 50^{\circ} \text{C}.$	

średn.	q_g ,	q_d ,	q _{sum} ,
przew.	, vv/mb	dm/vv	vv/m
mm			
7,0	14,6	2,2	16,7
9,0	15,2	2,2	17,4
11,0	15,9	2,3	18,2
13,0	16,5	2,4	18,9
15,0	17,1	2,4	19,5
20,0	18,3	2,6	20,9
25,0	19,5	2,7	22,2
30,0	20,6	2,8	23,4
35.0	21,7	2,9	24,6

Rys. 7: Liniowa gęstość mocy w funkcji średnicy przewodu, t_r=50°C.Fig. 7: Linear heat density in function of the pipe diameter. The pipe temperature equals 50°C.

6. Podsumowanie

Przedstawiona powyżej analiza pokazuje zależność strat ciepła i rozkładu temperatury na powierzchni podłogi od schematu umieszczenia przewodu w stropie. Duży wpływ na warunki wymiany ciepła mają wszystkie badane czynniki, a więc grubość warstwy betonu nad przewodem, średnica zewnętrzna przewodu, temperatura powierzchni zewnętrznej przewodu, a w związku z tym również zastosowanie izolacji termicznej. Aby nie dopuścić do przekroczenia dopuszczalnej temperatury na powierzchni podłogi, należy obniżać temperaturę wody lub izolować termicznie przewody.

Literatura

- 1. Cichelka J.: Ogrzewanie przez promieniowanie, ARKADY, Warszawa 1965.
- 2. Faxén O. H.: *Beräkning av värmeavginvningen från rör, ingjutna i betongplattor*, Teknisk Tidskrift Mekanisk, 1937, Häfte 3 (Mars).
- Hulbert L. E., Nottage H. B., Franks C. V.: No. 1388 Heat Flow Analysis in Panel Heating or Cooling sections. Case I – Uniformly Spaced Pipes Buried Within a Solid Slab, Transactions American Society of Heating and Ventilation Engineers Vol. 56, 1950, str. 189.
- 4. Kowalczyk A., Strzeszewski M.: *Przegląd i ocena wybranych metod analitycznego określania wydajności cieplnej grzejników podłogowych*, Prace Naukowe Politechniki Warszawskiej. Inżynieria Środowiska z. 31, Warszawa, 1999.
- 5. Macskasy A.: Luczistoje otoplienije, Moskwa 1985.
- 6. Minkowycz W.J., Sparrow E.M., Schneider G.E., Pletcher P.H.: *Handbook of Numerical Heat Transfer*, John Wiley & Sons, Inc., 1988.
- Nottage H. B., E., Franks C. V., Hulbert L., Schutrum L. F.: No. 1492 Heat Flow Analysis in Panel Heating or Cooling sections. Case II – Floor Slab on Earth with Uniformly Spaced Pipes or Tubes at the Slab-Earth Interface, Transactions American Society of Heating and Ventilation Engineers, str. 527.

- Rabjasz R., Dzierzgowski M., Strzeszewski M.: *Centralne ogrzewania mieszkaniowe mikroprzewodowe*, materiały konferencyjne V Forum Ciepłowników Polskich, Międzyzdroje 17-19 września 2001. (<u>http://www.is.pw.edu.pl/~michal.strzeszewski/articles/miedzyzdroje2001_mikroprzewodo</u> we.pdf)
- 9. Rabjasz R., Strzeszewski M.: *Dopuszczalna temperatura powierzchni podłogi*, COW nr 2/2002.
- 10. Rydberg J., Huber Chr.: *Värmeavgivening fråm rör i betong eller mark*, Svenska Värmeoch Sanitetstekniska Föreningens Handlingar IX, Förlags AB VVS, Stockholm 1955.
- 11. Staniszewski B.: Wymiana ciepła, PWN, Warszawa 1980.
- Strzeszewski M.: Zasięg cieplny pojedynczego liniowego źródła ciepła w stropie na podstawie modelu numerycznego, wydawnictwo PZITS nr 793/2001, Materiały Konferencyjne XIII Konferencji Ciepłowników "Efektywność dystrybucji i wykorzystania ciepła" Solina 27-29 września 2001. (http://www.is.pw.edu.pl/~michal.strzeszewski/articles/solina2001_zasieg.pdf)
- 13. Strzeszewski M., Rabjasz R.: *Ogrzewanie mikroprzewodowe. Podstawowe informacje*, Rynek Instalacyjny, 3/2002.
- 14. Strzeszewski M.: *Program komputerowy Floor 2D*, Instytut Ogrzewnictwa i Wentylacji Politechniki Warszawskiej, Warszawa 1997-2002.
- 15. Szargut J. i in.: Modelowanie numeryczne pól temperatury, WNT, Warszawa, 1992.
- 16. Szorin S.N.: Tiepłopieredacia, Moskwa 1964.
- 17. Weber A. P.: Centralne ogrzewania wodne, ARKADY, Warszawa 1975.